|
贝叶斯算法介绍
一. 贝叶斯过滤算法的基本步骤
1) 收集大量的垃圾邮件和非垃圾邮件,建立垃圾邮件集和非垃圾邮件集。
2) 提取邮件主题和邮件体中的独立字串例如 ABC32,¥234等作为TOKEN串并统计提取出的TOKEN串出现的次数即字频。按照上述的方法分别处理垃圾邮件集和非垃圾邮件集中的所有邮件。
3) 每一个邮件集对应一个哈希表,hashtable_good对应非垃圾邮件集而hashtable_bad对应垃圾邮件集。表中存储TOKEN串到字频的映射关系。
4) 计算每个哈希表中TOKEN串出现的概率P=(某TOKEN串的字频)/(对应哈希表的长度)
5) 综合考虑hashtable_good和hashtable_bad,推断出当新来的邮件中出现某个TOKEN串时,该新邮件为垃圾邮件的概率。数学表达式为:
A事件----邮件为垃圾邮件;
t1,t2 …….tn代表TOKEN串
则P(A|ti)表示在邮件中出现TOKEN串ti时,该邮件为垃圾邮件的概率。
设
P1(ti)=(ti在hashtable_good中的值)
P2(ti)=(ti在hashtable_ bad中的值)
则 P(A|ti)= P1(ti)/[(P1(ti)+ P2(ti)];
6) 建立新的哈希表 hashtable_probability存储TOKEN串ti到P(A|ti)的映射
7) 至此,垃圾邮件集和非垃圾邮件集的学习过程结束。根据建立的哈希表 hashtable_probability可以估计一封新到的邮件为垃圾邮件的可能性。
当新到一封邮件时,按照步骤2)生成TOKEN串。查询hashtable_probability得到该TOKEN 串的键值。
假设由该邮件共得到N个TOKEN串,t1,t2…….tn, hashtable_probability中对应的值为P1,P2,。。。。。。PN,
P(A|t1 ,t2, t3……tn)表示在邮件中同时出现多个TOKEN串t1,t2…….tn时,该邮件为垃圾邮件的概率。
由复合概率公式可得
P(A|t1 ,t2, t3……tn)=(P1*P2*。。。。PN)/[P1*P2*。。。。。PN+(1-P1)*(1-P2)*。。。(1-PN)]
当P(A|t1 ,t2, t3……tn)超过预定阈值时,就可以判断邮件为垃圾邮件。
二. 贝叶斯过滤算法举例
例如:一封含有“法轮功”字样的垃圾邮件 A
和 一封含有“法律”字样的非垃圾邮件B
根据邮件A生成hashtable_ bad,该哈希表中的记录为
法:1次
轮:1次
功:1次
计算得在本表中:
法出现的概率为0。3
轮出现的概率为0。3
功出现的概率为0。3
根据邮件B生成hashtable_good,该哈希表中的记录为:
法:1
律:1
计算得在本表中:
法出现的概率为0。5
律出现的概率为0。5
综合考虑两个哈希表,共有四个TOKEN串: 法 轮 功 律
当邮件中出现“法”时,该邮件为垃圾邮件的概率为:
P=0。3/(0。3+0。5)=0。375
出现“轮”时:
P=0。3/(0。3+0)=1
出现“功“时:
P=0。3/(0。3+0)=1
出现“律”时
P=0/(0+0。5)=0;
由此可得第三个哈希表:hashtable_probability 其数据为:
法:0。375
轮:1
功:1
律:0
当新到一封含有“功律”的邮件时,我们可得到两个TOKEN串,功 律
查询哈希表hashtable_probability可得
P(垃圾邮件| 功)=1
P (垃圾邮件|律)=0
此时该邮件为垃圾邮件的可能性为:
P=(0*1)/[0*1+(1-0)*(1-1)]=0
由此可推出该邮件为非垃圾邮件
|
|
|
|